Multiple Explanations Driven Naïve Bayes Classifier
نویسنده
چکیده
Exploratory data analysis over foreign language text presents virtually untapped opportunity. This work incorporates Naïve Bayes classifier with Case-Based Reasoning in order to classify and analyze Arabic texts related to fanaticism. The Arabic vocabularies are converted to equivalent English words using conceptual hierarchy structure. The understanding process operates at two phases. At the first phase, a discrimination network of multiple questions is used to retrieve explanatory knowledge structures each of which gives an interpretation of a text according to a particular aspect of fanaticism. Explanation structures organize past documents of fanatic content. Similar documents are retrieved to generate additional valuable information about the new document. In the second phase, the document classification process based on Naïve Bayes is used to classify documents into their fanatic class. The results show that the classification accuracy is improved by incorporating the explanation patterns with the Naïve Bayes classifier.
منابع مشابه
Image Classification Using Naïve Bayes Classifier
An image classification scheme using Naïve Bayes Classifier is proposed in this paper. The proposed Naive Bayes Classifier-based image classifier can be considered as the maximum a posteriori decision rule. The Naïve Bayes Classifier can produce very accurate classification results with a minimum training time when compared to conventional supervised or unsupervised learning algorithms. Compreh...
متن کاملSpam Detection System Combining Cellular Automata and Naïve Bayes Classifier
In this study, we focus on the problem of spam detection. Based on a cellular automaton approach and naïve Bayes technique which are built as individual classifiers we evaluate a novel method combining multiple classifiers diversified both by feature selection and different classifiers to determine whether we can more accurately detect Spam. This approach combines decisions from three cellular ...
متن کاملPrivacy Preserving Naïve Bayes Classifier for Horizontally Distribution Scenario Using Un-trusted Third Party
The aim of the classification task is to discover some kind of relationship between the input attributes and the output class, so that the discovered knowledge can be used to predict the class of a new unknown tuple. The problem of secure distributed classification is an important one. In many situations, data is split between multiple organizations. These organizations may want to utilize all ...
متن کاملBoosting the Tree Augmented Naïve Bayes Classifier
The Tree Augmented Naïve Bayes (TAN) classifier relaxes the sweeping independence assumptions of the Naïve Bayes approach by taking account of conditional probabilities. It does this in a limited sense, by incorporating the conditional probability of each attribute given the class and (at most) one other attribute. The method of boosting has previously proven very effective in improving the per...
متن کاملImproving on the Naïve Bayes Document Classifier
The Naïve Bayes document classifier has been used in many document classification algorithms [1], but is only really useful on a small subset of documents due to it’s many shortcomings [2]. By augmenting the basic functionality of the simple Naïve Bayes classifier, the classification algorithm can be applied to a much wider range of documents. This paper investigates the advantages which can be...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. UCS
دوره 12 شماره
صفحات -
تاریخ انتشار 2006